An Assessment of Bayesian Model-averaged Logistic Regression for Intensive-care Prognosis

نویسنده

  • RICHARD DYBOWSKI
چکیده

Logistic regression is the standard method for developing prognostic models for intensive care, but this approach does not take into account the uncertainty in the model selected and the uncertainty in its regression coefficients. This weakness can be addressed by adopting a Bayesian model-averaged approach to logistic regression; however, with respect to the dataset used for our study, we found maximum likelihood to be as effective as the more elaborate Bayesian approach, and an implementation of model averaging did not improve performance. Nevertheless, the Bayesian approach has the theoretical advantage that it can exploit prior knowledge about regression coefficient and model probabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation of new ensemble method of Bayesian and logistic regression models in landslide susceptibility assessment in the Khalkhal Township

The aim of current research is to assess of landslide susceptibility in the Khalkhal Township, southern Ardabil using an ensemble and new method namely Bayesian and logistic regression (BT-LR) models. At first, landslide inventory map was prepared and then effective factors on landslide occurrence were identified. These factors are slope degree, plan curvature, slope aspect, elevation, landuse,...

متن کامل

Bayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm

Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...

متن کامل

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000